5β-Hydroxy-ecdysones and a Revision of the Structure of Ponasterone C

By MASATO KOREEDA and KOJI NAKANISHI*†

(Department of Chemistry, Tohoku University, Sendai, Japan)

Summary Some of the spectral properties characteristic of the 5β -hydroxy-ecdysones are described and the structure of ponasterone C has been revised to (V); ponasterone B (I) is the only ecdysone having 2α , 3α -dihydroxy-groups.

THE structures¹ of ponasterones B (I) and C (II), which together with ponasterone A (III)² belong to one of the first groups of phytoecdysones (from *Podocarpus nakaii* Hay.) have been re-investigated: (i) as these were the only ecdysones with the atypical $2\alpha,3\alpha$ -dihydroxy-groups among the nearly 30 ecdysones characterized to date; and (ii) because the optical and m.s. data of ponasterone C was very similar to those of the recently isolated ajugasterone A (from *Ajuga decumbens*),³ which turned out to be polypodine B (IV),⁴ a 5 β -OH hydroxy-ecdysone.

High-resolution m.s.[‡] of ponasterone C with peaks at 478 (M - 18) and 460 (M - 36) indicated a molecular formula of C₂₇H₄₄O₈. The series of peaks[‡] at m/e 379, 361, 343, and 325 (C-20/C-22 fission followed by losses of 18, cf. V), also present in polypodine B and sengosterone⁵ (another 5 β -hydroxy-ecdysone), were in contrast to the m/e 363, 345, and 327 peaks exhibited by the more common ecdysones with only three nuclear hydroxy-groups, *e.g.*, ponasterone A (III), and demonstrated that an extra hydroxy-group is present on the nucleus. This extra group is 5 β for

the following reasons: (i) The olefinic 7-H n.m.r. signal (5.17 p.p.m., d, 2.5 Hz, in deuteriopyridine) was only coupled to the 9α -H signal, whereas in the common ecdysones an additional 7-H/5 β -H long-range coupling is invariably observed; (ii) The 2-H, 3-H, and 19-H n.m.r. signals of ponasterone C were very similar to those of polypodine B; (iii) A 7% increase in the 2-H n.m.r. signal area resulted upon irradiation of the 9α -H signal (Nuclear Overhauser Effect) in ponasterone C 2,3,22,24-tetra-acetate (cf. VI); (iv) The c.d. data of ponasterone C and polypodine B benzoates (Table 1) indicated that the C-2 and C-3

TABLE 1. C.d. of benzoates (in ethanol)

Benzoates		nm	$\Delta \epsilon$
Polypodine B 2,3,22,25-tetra-	••	$\begin{array}{c} 236 \\ 220 \end{array}$	-14.6 + 14.4
Ponasterone C 2,3,22,24-tetra-	••	$\begin{array}{c} 236 \\ 222 \end{array}$	$- \frac{8 \cdot 2^{a}}{+ 12 \cdot 8}$
Ponasterone B 2,3-di	••	$\frac{236}{221}$	-16-4 +12.1

 $^{\rm a}$ This smaller than average' value is due to interaction between the side-chain 1,3-dibenzoates.

hydroxy-groups adopt a 'negative' chirality' (cf. VI). Only partial structure $(VI)^{6}$ can account for experimental results

† Present address: Department of Chemistry, Columbia University, New York, N.Y. 10027.

(iii) and (iv), a conclusion which is supported by preparation of a polypodine B 3,5-carbonate.8

The c.d. Cotton effects due to the ring B enone system

(Table 2) is worthy of mention. Thus, the A/B cis ringjunction can be readily distinguished from the trans-fused system by the smaller amplitudes of the two Cotton effects.

TABLE 2 .	C.d. of	'ring E	3 enone	(in	dioxan
-------------	---------	---------	---------	-----	--------

$\pi \rightarrow \pi^*$		$n \rightarrow \pi^*$	
nm	$\Delta \epsilon$	\mathbf{nm}	$\Delta \epsilon$
242	- 3.5	340	+1.6
240	- 7.1	340	+3.3
251	- 5.74	326	+2.64
251	- 5.44	324	+3.00
245	-12.72	349	+3.55
	π^{-} nm 242 240 251 251 245	$\begin{array}{cccc} \pi \to \pi^* \\ \text{nm} & \Delta \epsilon \\ 242 & - & 3 \cdot 5 \\ 240 & - & 7 \cdot 1 \\ 251 & - & 5 \cdot 74 \\ 251 & - & 5 \cdot 44 \\ 245 & - & 12 \cdot 72 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^a Prepared according to A. Burawoy, J. Chem. Soc., 1937, 409.

Presence of a 5 β -hydroxy-group shifts the positions of both the $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ Cotton-effect peaks; the same tendency has been encountered in sengosterone⁵ as well. Thus, the c.d. data in Table 2 should be of diagnostic value for the characterization of further unknown ecdysones. Ponasterone C is thus represented by structure (V).

Mass spectral data of ponasterone B confirmed that only three nuclear hydroxy-groups were present in this ecdysone; this was corroborated by the \bar{M}^+ peak⁺₊ at m/e 504 $(C_{30}H_{48}O_6)$ of its 20,22-monoacetonide. One of the C-2 or C-3 hydrogens must be equatorial and the other axial as judged from the half-band-width of 7.5 Hz and 20 Hz for these protons in the n.m.r. of ponasterone B 2,3,22triacetate. Finally, the chirality of the 2,3-dibenzoate grouping is left-handed (Table 1). The only arrangements of hydroxy-groups satisfying these criteria are 2β , 3β or 2α , 3α (and ring A chair conformation), but since ponasterone A (III) is represented by 2β , 3β , ² ponasterone B is 2α , 3α , and therefore the sole ecdysone having this moiety. Apparently, configurations of the C-2 and C-3 hydroxy-groups do not greatly influence the moulting hormone activity as the activity of ponasterone B is comparable to those of other ecdysones.

This work was supported by the National Institutes of Health, PHS Research Grant.

(Received, January 22nd, 1970; Com. 103.)

t All m.s. data quoted in this communication were measured with CEC 110B high-resolution spectrometer by Drs. T. Tsuchiya and N. Wasada, Government Chemical Research Institute, Tokyo, whom we thank.

- ¹ K. Nakanishi, M. Koreeda, M. L. Chang, and H. Y. Hsu, Tetrahedron Letters, 1968, 1105.
- ² K. Nakanishi, M. Koreeda, S. Sasaki, M. L. Chang, and H. Y. Hsu, Chem. Comm., 1966, 915.
- ³ cf. S. Imai, E. Murata, S. Fujioka, M. Koreeda, and K. Nakanishi, Chem. Comm., 1969, 546. ⁴ J. Jizba, V. Herout, and F. Sorm, Tetrahedron Letters, 1967, 5139; we thank Dr. Herout for a generous gift of polypodine B.
- ⁵ H. Hikino, K. Nomoto and T. Takemoto, Tetrahedron Letters, 1969, 1417.
- ⁶ M. Koreeda, N. Harada, and K. Nakanishi, Chem. Comm., 1969, 548.
- ⁷ N. Harada and K. Nakanishi, J. Amer. Chem. Soc., 1969, 91, 3989.
- ⁸ G. Heinrich and H. Hoffmeister, Tetrahedron Letters, 1968, 6063.